By Topic

Coupon replication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Massoulie, L. ; Thomson Res. Paris, Paris ; Vojnovic, M.

Motivated by the study of peer-to-peer file swarming systems a la BitTorrent, we introduce a probabilistic model of coupon replication systems. These systems consist of users aiming to complete a collection of distinct coupons. Users enter the system with an initial coupon provided by a bootstrap server, acquire other coupons from other users, and leave once they complete their coupon collection. For open systems, with exogenous user arrivals, we derive stability condition for a layered scenario, where encounters are between users holding the same number of coupons. We also consider a system where encounters are between users chosen uniformly at random from the whole population. We show that sojourn time in both systems is asymptotically optimal as the number of coupon types becomes large. We also consider closed systems with no exogenous user arrivals. In a special scenario where users have only one missing coupon, we evaluate the size of the population ultimately remaining in the system, as the initial number of users N goes to infinity. We show that this size decreases geometrically with the number of coupons K. In particular, when the ratio K/ log(N) is above a critical threshold, we prove that this number of leftovers is of order log(log(N)). These results suggest that, under the assumption that the bootstrap server is not a bottleneck, the performance does not depend critically on either altruistic user behavior or on load-balancing strategies such as rarest first.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:16 ,  Issue: 3 )