By Topic

Reliability Evaluation for Power Electronics Device using Electrical Thermal and Mechanical Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Takashi Anzawa ; Department of Mechanical Engineering and Materials Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan. Phone: +81-45-339-3862, Fax: +81-45-331-6593 ; Qiang Yu ; Tadahiro Shibutani ; Masaki Shiratori

For power electronics devices, the reliability of thermal fatigue induced by power cycling has been prioritized as an important concern. Since power cycling produces non-uniform temperature distribution in the device, coupled thermal- structure analysis is required to evaluate thermal fatigue mechanism. The thermal expansion difference between a package and a substrate causes thermal fatigue. Many studies on thermal fatigue in electronics devices have been reported but temperature is often assumed to be uniform under thermal cycling environment. In this study, thermal fatigue of solder joints on power electronics device was evaluated. Joule heating produces temperature distribution, which affects the behavior of thermal fatigue. The finite element method (FEM) was used to evaluate temperature distribution induced by joule heating. Higher temperature appears below the bonded wire because the electric current flow through the bonding wire. Coupled thermal-structure analysis was also performed to evaluate the inelastic strain distribution. The damage of each element can be calculated from equivalent inelastic strain range and crack propagation was simulated by deleting damaged elements step by step. The crack initiates below the bonded wire and propagates concentrically under power cycling. There is the difference from environmental thermal cycling where the crack initiates at the edge of solder.

Published in:

Electronics Packaging Technology Conference, 2007. EPTC 2007. 9th

Date of Conference:

10-12 Dec. 2007