Cart (Loading....) | Create Account
Close category search window
 

Modeling of Full-Wave High Speed On-Chip RLC Interconnects using Frequency Shift Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ravindra, J.V.R. ; Int. Inst. of Inf. Technol., Hyderabad ; Srinivas, M.B.

Accurate modeling of high speed RLC interconnects has become a necessity to address signal integrity issues in current VLSI design. To accurately model a dispersive system of interconnects at higher frequencies; a full-wave analysis is required. However, conventional circuit simulation of interconnects with full-wave models is extremely CPU expensive. This paper presents an efficient full-wave analysis of RLC interconnects using frequency shift technique. Experiments have been carried out using Cadence Design Simulator which indicate that the proposed technique achieves more accuracy with less CPU time than the other model order reduction techniques existing in literature.

Published in:

Electronics Packaging Technology Conference, 2007. EPTC 2007. 9th

Date of Conference:

10-12 Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.