By Topic

Reduction of visual information in neural network learning process visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Uzak, M. ; Dept. of Cybern. & Artificial Intell., Tech. Univ. of Kosice, Kosice ; Vertal, I. ; Jaksa, R. ; Sincak, P.

Visualization of the learning of neural network faces the problem of dealing with overwhelming amount of visual information. This paper describes the application of clustering methods for reduction of visual information in the response function visualization. When only clusters of neurons are visualized, instead of direct visualization of responses of all neurons in the network, the amount of visually presented information can be significantly reduced. This is useful for reducing user fatigue and also for minimizing the visualization equipment requirements. We show, that application of Kohonen network or growing neural gas with utility factor algorithm allows to visualize the learning of moderate-sized neural networks in real time. Comparison of both algorithms in this task is provided, also with performance analysis and example results of response function visualization.

Published in:

Applied Machine Intelligence and Informatics, 2008. SAMI 2008. 6th International Symposium on

Date of Conference:

21-22 Jan. 2008