By Topic

A Comparative Analysis of Spatial Multiplexing Techniques for Outdoor MIMO-OFDM Systems with a Limited Feedback Constraint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Savazzi, S. ; Dipt. di Elettron. e Inf., Politec. di Milano, Milano ; Nicoli, M. ; Sternad, M.

In this paper, we analyze spatial multiplexing techniques for the downlink of a multiple-input-multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) system. Our study is focused on outdoor environments characterized by a moderate angular spread. We consider two techniques that are able to separate the downlink data streams associated with different users and to guarantee a fixed error probability by exploiting limited feedback from each user. The grid of beams (GoBs) and the proposed adaptive GoB (AGoB) differ in the way the precoders are designed (by adaptive or fixed processing) and in their scheduling policy. The new AGoB is able to harness partial knowledge of the downlink channel spatial structure to better select the users and adjust their precoders for downlink transmission. The performances of GoB and AGoB are compared in this paper in terms of throughput and cell coverage capability. The radio interface is adapted to fit the requirements for the adaptive modulation and coding with advanced antenna system (AMC-AAS) mode of the IEEE 802.16-2005 standard. Numerical results show that, as long as the channel exhibits a limited angular spread at the base station, the AGoB technique is able to provide significant throughput gains compared with the fixed GoB approach. On the other hand, large angular spreads are proved to have a substantial impact on system performance as the benefits of adaptation are significantly reduced.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:58 ,  Issue: 1 )