By Topic

Adaptive Sliding-Mode Control for NonlinearSystems With Uncertain Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ying-Jeh Huang ; Yuan Ze Univ., Chungli ; Tzu-Chun Kuo ; Shin-Hung Chang

This correspondence proposes a systematic adaptive sliding- mode controller design for the robust control of nonlinear systems with uncertain parameters. An adaptation tuning approach without high- frequency switching is developed to deal with unknown but bounded system uncertainties. Tracking performance is guaranteed. System robustness, as well as stability, is proven by using the Lyapunov theory. The upper bounds of uncertainties are not required to be known in advance. Therefore, the proposed method can be effectively implemented. Experimental results demonstrate the effectiveness of the proposed control method.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:38 ,  Issue: 2 )