By Topic

Use of Elastic Conductive Adhesive as the Bonding Agent for the Fabrication of Vertical Structure GaN-Based LEDs on Flexible Metal Substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

Through the use of elastic conductive adhesive (ECA) as the bonding agent and patterned laser lift-off technology, a flexible metal substrate technology for the fabrication of vertical structured GaN-based light-emitting diodes (flex-LEDs) was proposed and demonstrated. It showed that the flex-LEDs have negligible changes in dominant wavelength-current and light output intensity-current-voltage characteristics when subjected to an external bending stress, indicating that the ECA used in the present technology performed well as a buffer to external stresses. As compared with conventional sapphire substrate GaN-based LEDs, Flex-LEDs with a chip size of 600 x 600 mum2 showed an increase in light output intensity (power) about 216% (80%) at 120 mA with an essential decrease in forward voltage from 3.51 to 3.3 V.

Published in:

IEEE Photonics Technology Letters  (Volume:20 ,  Issue: 7 )