By Topic

Enhancing Search Performance in Unstructured P2P Networks Based on Users' Common Interest

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gang Chen ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Chor Ping Low ; Zhonghua Yang

Peer-to-peer (P2P) networks establish loosely coupled application-level overlays on top of the Internet to facilitate efficient sharing of resources. They can be roughly classified as either structured or unstructured networks. Without stringent constraints over the network topology, unstructured P2P networks can be constructed very efficiently and are therefore considered suitable to the Internet environment. However, the random search strategies adopted by these networks usually perform poorly with a large network size. In this paper, we seek to enhance the search performance in unstructured P2P networks through exploiting users' common interest patterns captured within a probability-theoretic framework termed the user interest model (UIM). A search protocol and a routing table updating protocol are further proposed in order to expedite the search process through self organizing the P2P network into a small world. Both theoretical and experimental analyses are conducted and demonstrated the effectiveness and efficiency of our approach.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 6 )