By Topic

Control-Based Adaptive Middleware for Real-Time Image Transmission over Bandwidth-Constrained Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xiaorui Wang ; Dept. of Electr. Eng. & Comput. Sci., Tennessee Univ., Knoxville, TN ; Ming Chen ; Huang-Ming Huang ; Subramonian, V.
more authors

Real-time image transmission is crucial to an emerging class of distributed embedded systems operating in open network environments. Examples include avionics mission replanning over Link-16, security systems based on wireless camera networks, and online collaboration using camera phones. Meeting image transmission deadlines is a key challenge in such systems due to unpredictable network conditions. In this paper, we present CAMRIT, a Control-based Adaptive Middleware framework for Real-time Image Transmission in distributed real-time embedded systems. CAMRIT features a distributed feedback control loop that meets image transmission deadlines by dynamically adjusting the quality of image tiles. We derive an analytic model that captures the dynamics of a distributed middleware architecture. A control-theoretic methodology is applied to systematically design a control algorithm with analytic assurance of system stability and performance, despite uncertainties in network bandwidth. Experimental results demonstrate that CAMRIT can provide robust real-time guarantees for a representative application scenario.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 6 )