By Topic

Automatic Detection of Large Dense-Core Vesicles in Secretory Cells and Statistical Analysis of Their Intracellular Distribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ester Diaz ; University of Valencia University of Valencia University of Yale, Burjassot Burjassot New Haven ; Guillermo Ayala ; Maria Diaz-Fernandez ; Liang Gong
more authors

Analyzing the morphological appearance and the spatial distribution of large dense-core vesicles (granules) in the cell cytoplasm is central to the understanding of regulated exocytosis. This paper is concerned with the automatic detection of granules and the statistical analysis of their spatial locations in different cell groups. We model the locations of granules of a given cell as a realization of a finite spatial point process and the point patterns associated with the cell groups as replicated point patterns of different spatial point processes. First, an algorithm to segment the granules using electron microscopy images is proposed. Second, the relative locations of the granules with respect to the plasma membrane are characterized by two functional descriptors: the empirical cumulative distribution function of the distances from the granules to the plasma membrane and the density of granules within a given distance to the plasma membrane. The descriptors of the different cells for each group are compared using bootstrap procedures. Our results show that these descriptors and the testing procedure allow discriminating between control and treated cells. The application of these novel tools to studies of secretion should help in the analysis of diseases associated with dysfunctional secretion, such as diabetes.

Published in:

IEEE/ACM Transactions on Computational Biology and Bioinformatics  (Volume:7 ,  Issue: 1 )