By Topic

Optimal Synthesis of State-Estimate Feedback Controllers With Minimum l_{2} -Sensitivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hinamoto, T. ; Grad. Sch. of Eng., Hiroshima Univ., Hiroshima ; Kawagoe, T.

This paper investigates the problem of synthesizing the optimal structure of a state-estimate feedback controller with minimum l 2-sensitivity and no overflow. First, the l 2-sensitivity of a closed-loop transfer function with respect to the coefficients of a state-estimate feedback controller is analyzed. Next, two iterative techniques for obtaining the coordinate transformation matrix which constructs the optimal structure of a state-estimate feedback controller are developed so as to minimize an l 2-sensitivity measure subject to l 2-scaling constraints. One technique is based on a Lagrange function, some matrix-theoretic techniques, and an efficient bisection method. Another technique converts the problem into an unconstrained optimization formulation by using linear-algebraic techniques, and optimizes it by applying an efficient quasi-Newton method with closed-form formula for gradient evaluation. A numerical example is also presented to illustrate the utility of the proposed techniques.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:55 ,  Issue: 8 )