By Topic

Deadlock Checking for One-Place Unbounded Petri Nets Based on Modified Reachability Trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
ZhiJun Ding ; Coll. of Inf. Sci. & Eng., Shandong Univ. of Sci. & Technol., Qingdao ; ChangJun Jiang ; MengChu Zhou

A deadlock-checking approach for one-place unbounded Petri nets is presented based on modified reachability trees (MRTs). An MRT can provide some useful information that is lost in a finite reachability tree, owing to MRT's use of the expression rather than symbol to represent the value of the components of a marking. The information is helpful to property analysis of unbounded Petri nets. For the deadlock-checking purpose, this correspondence paper classifies full conditional nodes in MRT into two types: true and fake ones. Then, an algorithm is proposed to determine whether a full conditional node is true or not. Finally, a necessary and sufficient condition of deadlocks is presented. Examples are given to illustrate the method.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:38 ,  Issue: 3 )