By Topic

Influence of Hydrogen Incorporation on the Reliability of Gate Oxide Formed by Using Low-Temperature Plasma Selective Oxidation Applicable to Sub-50-nm W-Polymetal Gate Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)

This letter reveals the physical and electrical properties of silicon dioxide (Si02) formed by the plasma selective oxidation (plasma selox) using 02 and H2 gas mixture, which is applicable to sub-50-nm tungsten-polymetal gate memory devices without capping nitride film. Metal-oxide-semiconductor capacitors with gate oxide formed by the plasma selox at the process temperature in the range of 400degC-700degC showed much better time-dependent dielectric-breakdown characteristics than those formed by the conventional thermal selox at 850degC. On the other hand, in the case of very low temperature (25degC) plasma selox, the gate oxide degradation such as initial breakdown was found. It turned out to be due to the excessive hydrogen and water incorporation into the SiO2 layer through thermal desorption spectroscopy measurements.

Published in:

IEEE Electron Device Letters  (Volume:29 ,  Issue: 4 )