Cart (Loading....) | Create Account
Close category search window
 

A High Conversion-Gain Q -Band InP DHBT Subharmonic Mixer Using LO Frequency Doubler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

The paper presents analysis and design of a Q-band subharmonic mixer (SHM) with high conversion gain. The SHM consists of a local oscillator (LO) frequency doubler, RF pre-amplifier, and single-ended mixer. The SHM has been fabricated in a high-speed InP double heterojunction bipolar transistor (DHBT) technology using coplanar waveguide structures. To the best of our knowledge, this is the first demonstration of an SHM using InP DHBT technology at millimeter-wave frequencies. The measured results demonstrate a conversion gain of 10.3 dB at 45 GHz with an LO power of only 1 mW. The fundamental mixing product is suppressed by more than 24 dB and the output is around . The mixer is broadband with a conversion gain above 7 dB from 40 to 50 GHz. The conversion gain for the fabricated SHM is believed to be among the best ever reported for millimeter-wave SHMs.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:56 ,  Issue: 3 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.