By Topic

Analysis and Reduction of Time Harmonic Rotor Loss in Solid-Rotor Synchronous Reluctance Drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jae-Do Park ; Pentadyne Power Corp., Chatsworth ; Kalev, C. ; Hofmann, H.F.

Synchronous reluctance machines with solid rotor construction have advantages in certain high-speed applications such as flywheel energy storage systems. However, the solid rotor allows the flow of eddy currents, resulting in rotor loss and heat generation. The switching harmonics in the stator voltage supplied by a pulsewidth modulation (PWM) inverter are one of the sources of the rotor loss. This paper performs an analysis for the time harmonic loss in a solid-rotor synchronous reluctance machine, and investigates design and control issues associated with the inclusion of a three-phase LC filter for reduction of the rotor loss in solid rotor. A two-phase dynamic model of the machine which incorporates the LC filter dynamics is presented. This model is used to predict rotor losses due to switching harmonics generated by the three-phase PWM inverter. A model-based current regulator is utilized, which is modified to include the effects of the LC filter. Experimental results validate the proposed approach.

Published in:

Power Electronics, IEEE Transactions on  (Volume:23 ,  Issue: 2 )