By Topic

Implementing Influence Analysis Using Parameterised Boolean Equation Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
del Mar Gallardo, M. ; Univ. of Malaga, Malaga ; Joubert, C. ; Merino, P.

The well-known problem of state space explosion in model checking is even more critical when applying this technique to programming languages, mainly due to the presence of complex data structures. One recent and promising approach to deal with this problem is the construction of an abstract and correct representation of the global program state allowing to match visited states during program model exploration. In particular, one powerful method to implement abstract matching is to fill the state vector with a minimal amount of relevant variables for each program point. In this paper, we combine the on-the-fly model checking approach (incremental construction of the program state space) and the static analysis method called influence analysis (extraction of significant variables for each program point) in order to automatically construct an abstract matching function. Firstly, we describe the problem as an alternation-free value-based mu-calculus formula, whose validity can be checked on the program model expressed as a labeled transition system (LTS). Secondly, we translate the analysis into the local resolution of a parameterised Boolean equation system (PBES), whose representation enables a more efficient construction of the resulting abstract matching function. Finally, we show how our proposal has been elegantly integrated into CADP, a generic framework for both the design and analysis of distributed systems and the development of verification tools.

Published in:

Leveraging Applications of Formal Methods, Verification and Validation, 2006. ISoLA 2006. Second International Symposium on

Date of Conference:

15-19 Nov. 2006