By Topic

An Improved Quasi-Static Finite-Difference Scheme for Induced Field Evaluation Based on the Biconjugate Gradient Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hua Wang ; Sch. of Inf. Technol. & Electr. Eng., Queensland Univ., Brisbane, QLD ; Feng Liu ; Trakic, A. ; Crozier, S.

This paper presents a biconjugate gradient (BiCG) method that can significantly improve the performance of the quasi-static finite-difference scheme, which has been widely used to model field induction phenomena in voxel phantoms. The proposed BiCG method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional iterative, successive overrelaxation algorithm. The scheme has been validated against other known solutions on a lossy, multilayered ellipsoid phantom excited by an ideal coil loop. The wide application capability and computational performance of the BiCG method is demonstrated by modeling the exposure of MRI healthcare workers to fields produced by pulsed field gradients. This is an important topic of research in light of the Physical Agents Directive 2004/40/EC because a variety of realistic operator postures near the bore entrance of an MRI system are modeled.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 7 )