By Topic

Noise Estimation in Infrared Image Sequences: A Tool for the Quantitative Evaluation of the Effectiveness of Registration Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Agostini, V. ; Dept. of Electron., Politec. di Torino, Turin ; Delsanto, S. ; Knaflitz, M. ; Molinari, F.

Dynamic infrared imaging has been proposed in literature as an adjunctive technique to mammography in breast cancer diagnosis. It is based on the acquisition of hundreds of consecutive thermal images with a frame rate ranging from 50 to 200 frames/s, followed by the harmonic analysis of temperature time series at each image pixel. However, the temperature fluctuation due to blood perfusion, which is the signal of interest, is small compared to the signal fluctuation due to subject movements. Hence, before extracting the time series describing temperature fluctuations, it is fundamental to realign the thermal images to attenuate motion artifacts. In this paper, we describe a method for the quantitative evaluation of any kind of feature-based registration algorithm on thermal image sequences, provided that an estimation of local velocities of reference points on the skin is available. As an example of evaluation of a registration algorithm, we report the evaluation of the SNR improvement obtained by applying a nonrigid piecewise linear algorithm.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 7 )