Cart (Loading....) | Create Account
Close category search window

Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oskoei, M.A. ; Dept. of Comput. & Electron. Syst., Essex Univ., Colchester ; Huosheng Hu

This paper proposes and evaluates the application of support vector machine (SVM) to classify upper limb motions using myoelectric signals. It explores the optimum configuration of SVM-based myoelectric control, by suggesting an advantageous data segmentation technique, feature set, model selection approach for SVM, and postprocessing methods. This work presents a method to adjust SVM parameters before classification, and examines overlapped segmentation and majority voting as two techniques to improve controller performance. A SVM, as the core of classification in myoelectric control, is compared with two commonly used classifiers: linear discriminant analysis (LDA) and multilayer perceptron (MLP) neural networks. It demonstrates exceptional accuracy, robust performance, and low computational load. The entropy of the output of the classifier is also examined as an online index to evaluate the correctness of classification; this can be used by online training for long-term myoelectric control operations.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 8 )

Date of Publication:

Aug. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.