By Topic

Accelerometers and Force Sensing Resistors for Optimal Control of Walking of a Hemiplegic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Strahinja Dos¿en* ; Center for Sensory Motor Interaction, Aalborg Univ., Aalborg ; Dejan B. Popovi¿

We developed a method for use of accelerometers and force sensing resistors (FSRs) within an optimal controller of walking for hemiplegic individuals. The data from four dual-axis accelerometers and four FSRs were inputs, while six muscle activation profiles were outputs. The controller includes two stages: 1) estimating the target gait pattern using artificial neural networks; and 2) optimal control minimizing tracking errors (from the estimated gait pattern) and muscle efforts. The controller was tested using data collected from six healthy subjects walking at five speeds (0.6-1.4 m/s). The average root mean square errors (RMSEs) normalized by the peak-to-peak value of the target signals [normalized RMSE (NRMSE)] were below 6%, 7%, 8%, and 3% for estimation of joint angles, hip acceleration, ground reaction force, and movement of the center of pressure, respectively. Using the estimated data as inputs, the simulation generated the target healthy-like gait patterns and reproducible muscle activation profiles in 90% of 300 tested gait trials. Overall tracking NRMSE was between 2% and 9%. The optimal controller was developed for testing the feasibility of healthy-like gait patterns in hemiplegic individuals, and generating a knowledge base that is required for the synthesis of a sensory-driven control of walking assisted by functional electrical stimulation.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:55 ,  Issue: 8 )