By Topic

Design and implementation of an inverse class-F power amplifier with 79 % efficiency by using a switch-based active device model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pouya Aflaki ; iRadio Lab, Electrical and Computer Engineering Department, Schulich School of Engineering, University of Calgary, AB, T2N 1N4 Canada ; Renato Negra ; Fadhel M. Ghannouchi

This paper presents the design and implementation of an inverse class-F power amplifier using a commercially available GaN 2 W power transistor. A switch-based model for this transistor was implemented in ADS and used to design this high efficiency amplifier. Simulation results with the developed model show drain efficiency of 79%, more than 19 dB of large-signal gain for an output power of greater than 5 W at 1 GHz. These values are confirmed by measurements, showing the usefulness of the switch-based active device model for this type of switching-mode power amplifiers.

Published in:

2008 IEEE Radio and Wireless Symposium

Date of Conference:

22-24 Jan. 2008