By Topic

An 88%-Power-Efficiency Accuracy-Enhanced DC-DC Conversion System for Transcutaneous-Powered Cochlear Implants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiwen Zhang ; Univ. of Texas at Dallas, Richardson ; Hoi Lee

This paper presents a dc-dc conversion system consisting of a switched-capacitor voltage tripler and a low-dropout regulator (LDO) for transcutaneous-powered cochlear implants. Break-before-make mechanism is developed in the tripler to improve the power efficiency and reduces the output glitch. The current-buffer compensated LDO as a post-regulator of the tripler not only removes the glitch from the tripler, but also maintains a constant and stable output voltage irrespective of the change in different load currents. The accuracy of the output voltage is thus significantly enhanced. In a standard 0.35-mum CMOS, results show that the proposed system can deliver up to 60 mA load current and achieve the peak power efficiency of 88%. The maximum output voltage variation is only 0.6% of the nominal output of 4.84 V under full load current change of 60 mA.

Published in:

Biomedical Circuits and Systems Conference, 2007. BIOCAS 2007. IEEE

Date of Conference:

27-30 Nov. 2007