Cart (Loading....) | Create Account
Close category search window
 

A Statistical and Biological Approach for identifying misdiagnosis of incipient Alzheimer patients Using Gene expression Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Joseph, S. ; Centre for Animal & Dairy Sci., Georgia Univ., Athens, GA ; Robbins, K.R. ; Rekaya, R.

A latent-threshold model and misclassification algorithm were implemented to examine potential misdiagnosis among 16 Alzheimer's disease (AD) subjects using gene expression data. Results obtained without invoking the misclassification algorithm showed limited predictive power of the model. When the misclassification algorithm was invoked, four subjects were identified as being potentially misdiagnosed. Results obtained after adjustment of the AD status of these four samples showed a significant increase in the model's predictive ability. Mixed model analysis detected no AD related genes as differentially expressed when using original classifications; conversely, multiple AD genes were identified using the new classifications. These results suggest that this algorithm can identify misclassified subjects which, in turn, can increase power to predict disease status and identify disease related genes

Published in:

Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2006-Sept. 3 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.