Cart (Loading....) | Create Account
Close category search window
 

Prediction of RNA-Binding Residues in Protein Sequences Using Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Liangjiang Wang ; Div. of Biol., Kansas State Univ., Manhattan, KS ; Brown, S.J.

Understanding the molecular recognition between RNA and proteins is central to elucidation of many biological processes in the cell. Although structural data are available for some protein-RNA complexes, the interaction patterns are still mostly unclear. In this study, support vector machines as well as artificial neural networks have been trained to predict RNA binding residues from five sequence-derived features, including the solvent accessible surface area, BLAST-based conservation score, hydrophobicity index, side chain pKa value and molecular mass of an amino acid. It is found that support vector machines outperform neural networks for prediction of RNA-binding residues. The best support vector machine achieves 70.74% of prediction strength (average of sensitivity and specificity), whereas the performance measure reaches 67.79% for the neural networks. The results suggest that RNA binding residues can be predicted directly from amino acid sequence information. Online prediction of RNA-binding residues is available at http://bioinformatics.ksu.edu/bindn/

Published in:

Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2006-Sept. 3 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.