By Topic

Identification of Spike Sources using Proximity Analysis through Hidden Markov Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Orozco, A. ; Programa de Ingenieria Electr., Univ. Tecnologica de Pereira ; Alvarez, M. ; Guijarro, E. ; Castellanos, G.

Hidden Markov Models have shown promising results for identification of spike sources in Parkinson's disease treatment, e.g., for deep brain stimulation. Usual classification criteria consist in maximum likelihood rule for the recognition of the correct class. In this paper, we present a different classification scheme based in proximity analysis. For this approach matrices of Markov process are transformed to another space where similarities and differences to other Markov processes are better revealed. The authors present the proximity analysis approach using hidden Markov models for the identification of spike sources (Thalamo and Subthalamo sources, Gpi and GPe sources). Results show that proximity analysis improves recognition performance for about 5% over traditional approach

Published in:

Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2006-Sept. 3 2006