By Topic

Automatic Image Processing Algorithm to Detect Hard Exudates based on Mixture Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sanchez, C.I. ; Dept. of Signal Theor. & Commun., Valladolid Univ. ; Mayo, A. ; Garcia, M. ; Lopez, M.I.
more authors

Automatic detection of hard exudates from retinal images is clinically significant. Hard exudates are associated with diabetic retinopathy and have been found to be one of the most prevalent earliest clinical signs of retinopathy. In this study, an automatic method to detect hard exudates is proposed. The algorithm is based on mixture models to dynamically threshold the images in order to separate hard exudates from background. We prospectively assessed the algorithm performance using a database of 20 retinal images with variable color, brightness, and quality. The algorithm obtained a sensitivity of 90.23% and a predictive value of 82.5% using a lesion-based criterion. The image-based classification accuracy is also evaluated obtaining a sensitivity of 100% and a specificity of 90%

Published in:

Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2006-Sept. 3 2006