By Topic

Segmentation of 4D Cardiac Images: Investigation on Statistical Shape Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Renno, M.S. ; Harrington Dept. of Bioeng., Arizona State Univ., Tempe, AZ ; Yan Shang ; Sweeney, J. ; Dossel, Olaf

The purpose of this research was two-fold: (1) to investigate the properties of statistical shape models constructed from manually segmented cardiac ventricular chambers to confirm the validity of an automatic 4-dimensional (4D) segmentation model that uses gradient vector flow (GVF) images of the original data and (2) to develop software to further automate the steps necessary in active shape model (ASM) training. These goals were achieved by first constructing ASMs from manually segmented ventricular models by allowing the user to cite entire datasets for processing using a GVF-based landmarking procedure and principal component analysis (PCA) to construct the statistical shape model. The statistical shape model of one dataset was used to regulate the segmentation of another dataset according to its GVF, and these results were then analyzed and found to accurately represent the original cardiac data when compared to the manual segmentation results as the golden standard

Published in:

Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2006-Sept. 3 2006