Cart (Loading....) | Create Account
Close category search window

Experiments on the development and use of a new generation of intra-neural electrodes to control robotic devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Micera, S. ; ARTS & CRIM Labs, Scuola Superiore Sant''Anna, Pisa ; Sergi, P.N. ; Carpaneto, J. ; Citi, L.
more authors

The development of interfaces linking the human nervous system with artificial devices is an important area of research and several groups are now addressing it. Interfaces represent the key enabling technology for the development of devices usable for the restoration of motor and sensory function in subjects affected by neurological disorders, injuries or amputations. For example, current hand prostheses use electromyographic (EMG) signals to extract volitional commands but this limits the possibility of controlling several degrees of freedom and of delivering sensory feedback. To achieve these goals, implantable neural interfaces are required. Among the candidate interfaces with the peripheral nervous system intra-neural electrodes seem to be an interesting solution due to their bandwidth and ability to access volition and deliver sensory feedback. However, several drawbacks have to be addressed in order to increase their usability. In this paper, experiments to address many of these issues are presented as part of the development of a new generation of intra-neural electrodes. The results showed seem to confirm that these new interfaces seem to have interesting properties and that they can represent a significant improvement of the state of the art. Extensive experiments will be carried out in the future to validate these results

Published in:

Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2006-Sept. 3 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.