By Topic

Walk Detection With a Kinematic Sensor: Frequency and Wavelet Comparison

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barralon, P. ; Lab. TIMC-IMAG, CNRS, La Tronche ; Vuillerme, N. ; Noury, N.

This study is included in the framework of Health Smart Homes which monitor some physiological or not physiological parameters of elderly people living independently at home. In this study we will focus on the walk detection. Walk activity is one parameter to evaluate the health of patient. For example, the total time of walk during a day allows assessing quickly if the subject is mobile rather than immobile. To reach this goal we used a kinematic sensor placed on the chest recording the movements of the subject. The data are analyzed by six algorithms to detect walk phases: two based on Fourier analysis and the others using a wavelet decomposition (DWT and CWT). All algorithms are described and the performances are evaluated on real data recorded with 20 elderly people. Results show that the method using the DWT decomposition is the most efficient (78.5% in sensitivity and 67.6% in specificity)

Published in:

Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2006-Sept. 3 2006