By Topic

A New Methodology Based on q-Entropy for Breast Lesion Classification in 3-D Ultrasound Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Classification of breast lesions is clinically most relevant for breast radiologists and pathologists for early breast cancer detection. This task is not easy due to poor ultrasound resolution and large amount of patient data size. This paper proposes a five step novel and automatic methodology for breast lesion classification in 3-D ultrasound images. The first three steps yield an accurate segmentation of the breast lesions based on the combination of (a) novel non-extensive entropy, (b) morphologic cleaning and (c) accurate region and boundary extraction in level set framework. Segmented lesions then undergo five feature extractions consisting of: area, circularity, protuberance, homogeneity, and acoustic shadow. These breast lesion features are then input to a support vector machine (SVM)-based classifier that classifies the breast lesions between malignant and benign types. SVM utilizes B-spline as a kernel in its framework. Using a data base of 250 breast ultrasound images (100 benign and 150 malignant) and utilizing the cross-validation protocol, we demonstrate system's accuracy, sensitivity, specificity, positive predictive value and negative predictive value as: 95%, 97%, 94%, 92% and 98% respectively in terms of ROC curves and Az areas, better in performance than the current literature offers

Published in:

Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2006-Sept. 3 2006