By Topic

Combination 3D TOP with 2D PC MRA Techique for Cerebral Blood Flow Volume Measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
G. Guo ; Medical Imaging and Central Laboratory, Shantou University Medical College, Shantou, Guangdong, 515041, China; Department of Medical Imaging, The Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada ; RH Wu ; YP Zhang ; JT Guan
more authors

To demonstrate the discrepancy of cerebral blood flow volume (BFV) estimation with 2D phase-contrast (2D PC) MRA guided with 3D time-of-flight (3D TOF) MR localization by using an "internal" standard. 20 groups of the common (CCA), internal (ICA), and external (ECA) carotid arteries in 10 healthy subjects were examined with 2D PC MRA guided by 3D TOF MR angiograms. The sum BFV of the internal and external carotid arteries was then compared with the ipsilateral common carotid artery flow. An accurate technique would demonstrate no difference. The difference was therefore a measure of accuracy of the method. 3D TOF MRA localization is presented to allow the determination of a slice orientation to improve the accuracy of 2D PC MRA in estimate the BFV. By using the combined protocols, there was better correlation in BFV estimate between the sum of ICA+ECA with the ipsilateral CCA (R=0.729, P=0.000). The inconsistency (meanplusmnSD) was found to be 6.95plusmn 5.95% for estimate the BFV in ICA+ECA and ipsilateral CCA. The main inconsistency was contributed to the ECA and its branches. Guided with 3D TOF MRA localization, 2D PC MRA is more accurate in the determination of blood flow volume in the carotid arteries

Published in:

Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2006-Sept. 3 2006