Cart (Loading....) | Create Account
Close category search window
 

Chemical Mechanisms of Bacterial Inactivation Using Dielectric Barrier Discharge Plasma in Atmospheric Air

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yue Ma ; State Key Lab. of Electr. Insulation & Power Equip., Xi''an Jiaotong Univ., Xi''an ; Guan-Jun Zhang ; Xing-Min Shi ; Gui-Min Xu
more authors

Nonthermal plasma generated by parallel-plate dielectric-barrier discharge with 60-kHz high-voltage power was used to sterilize the bacteria in atmospheric air. Two kinds of typical bacteria, gram-negative E. coli (ATCC8099) and grampositive S. aureus (ATCC6538), were used as test strains. Bacteria cells held by cover-glass were placed on the bottom electrode. By adjusting the applied voltage, gap spacing, and treatment time, the effects of plasma and electric field on bacteria inactivation were investigated. The transmission electron microscope was used to observe the damage of cells treated by plasma. The concentrations of K+, protein, and nucleic acid leaked from cells were measured for detecting the cytoplasm status after plasma treatment. Experimental results showed that almost 100% of S. aureus and E. coli strains were killed in less than 10- and 7-s plasma treatment, respectively. It is concluded that the reactive oxygen species (ROS) in plasma play a dominant role in the inactivation process but not the electric field. It is supposed that the ROS can oxidize the cell membrane and then damage the protein and nucleic acid inside the cells and, thus, kill the bacteria.

Published in:

Plasma Science, IEEE Transactions on  (Volume:36 ,  Issue: 4 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.