Cart (Loading....) | Create Account
Close category search window
 

Adaptive Load Sharing for Network Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kencl, L. ; CTU-Ericsson-Vodafone, Prague ; Le Boudec, J.-Y.

A novel scheme for processing packets in a router is presented that provides load sharing among multiple network processors distributed within the router. It is complemented by a feedback control mechanism designed to prevent processor overload. Incoming traffic is scheduled to multiple processors based on a deterministic mapping. The mapping formula is derived from the robust hash routing (also known as the highest random weight - HRW) scheme, introduced in K. W. Ross, IEEE Network, 11(6), 1997, and D. G. Thaler et al., IEEE Trans. Networking, 6(1), 1998. No state information on individual flow mapping has to be stored, but for each packet, a mapping function is computed over an identifier vector, a predefined set of fields in the packet. An adaptive extension to the HRW scheme is provided to cope with biased traffic patterns. We prove that our adaptation possesses the minimal disruption property with respect to the mapping and exploit that property to minimize the probability of flow reordering. Simulation results indicate that the scheme achieves significant improvements in processor utilization. A higher number of router interfaces can thus be supported with the same amount of processing power.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:16 ,  Issue: 2 )

Date of Publication:

April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.