Cart (Loading....) | Create Account
Close category search window
 

Classifier based low-complexity MIMO detection for spatial multiplexing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, we propose a low complexity detection scheme for MIMO systems incorporating spatial multiplexing. Optimal detection schemes such as maximum-likelihood (ML) detection of MIMO signals demands computational resources that are beyond the capabilities of most practical systems. Alternative reduced complexity MIMO detection techniques have been proposed, but the complexity of algorithmic schemes are in general much higher than that of the equalizer-based techniques, e.g. zero-forcing (ZF) or MMSE. On the other hand, equalizer- based techniques perform relatively poor in terms of error rate. In this paper, we propose a hybrid of an equalizer-based technique and an algorithmic search stage. Based on an error matrix and its probability density functions for different classes of error, a particular search region is selected for the algorithmic stage. As the probability of occurrence of error classes with larger search regions is small, overall complexity of the proposed technique remains low while providing a significant improvement in the error performance.

Published in:

Communications Theory Workshop, 2008. AusCTW 2008. Australian

Date of Conference:

Jan. 30 2008-Feb. 1 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.