By Topic

Error and Transient Analysis of Stepwise-Approximated Sine Waves Generated by Programmable Josephson Voltage Standards

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Burroughs, C.J. ; Nat. Inst. of Stand. & Technol., Boulder, CO ; Rufenacht, A. ; Benz, S.P. ; Dresselhaus, P.D.
more authors

We are developing a quantum-based 60 Hz power standard that exploits the precision sinusoidal reference voltages synthesized by a programmable Josephson voltage standard (PJVS). PJVS systems use series arrays of Josephson junctions as a multibit digital-to-analog converter to produce accurate quantum-based dc voltages. Using stepwise-approximation synthesis, the system can also generate arbitrary ac waveforms [i.e., an ac programmable Josephson voltage standard (ACPJVS)] and, in this application, produces sine waves with calculable root mean square (rms) voltage and spectral content. The primary drawback to this ACPJVS synthesis technique is the uncertainty that results from switching between the discrete voltages due to finite rise times and transient signals. In this paper, we present measurements and simulations that elucidate some of the error sources that are intrinsic to the ACPJVS when used for rms measurements. In particular, we consider sine waves synthesized at frequencies up to the audio range, where the effect of these errors is more easily measured because the fixed transition time becomes a greater fraction of the time in each quantized voltage state. Our goal for the power standard is to reduce all error sources and uncertainty contributions from the PJVS-synthesized waveforms at 60 Hz to a few parts in 107 so that the overall uncertainty in an ac power standard will be a few parts in 106.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:57 ,  Issue: 7 )