By Topic

Hierarchical Segmentation of Piecewise Pseudoextruded Surfaces for Uniform Coverage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Atkar, P.N. ; Dept. of Mech. Eng., Carnegie Mellon Univ., Pittsburgh, PA ; Conner, D.C. ; Greenfield, A. ; Choset, H.
more authors

Complete automation of trajectory planning tools for material deposition/removal applications has become increasingly necessary to reduce the ldquoconcept-to-consumerrdquo timeline for rapid product introduction in industries such as the automotive industry. The work in this paper is specifically motivated by automotive spray painting. Prior developments in automated trajectory planning tools promise to reduce the time required to program the robots; however, these approaches are limited to surfaces that are either approximately planar or topologically simple (i.e., with no holes). To extend the applicability of these planning tools to nonplanar and topologically complex surfaces, currently the user has to manually segment a complex surface into simpler subsets, i.e., subsets that are approximately extruded surfaces and contain no holes. However, the complex nature of the relationships between surface segmentation and resulting output characteristics such as material deposition uniformity, process cycle time, and material waste makes the task of manually segmenting the surface difficult. In this paper, we develop a hierarchical procedure that automatically segments a surface based on surface geometry, surface topology, and path geometry to obtain topologically simple subsets that are approximately extruded surfaces. Finally, we compare the effectiveness of our segmentation with the state of the art on a few automotive surfaces in simulation.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:6 ,  Issue: 1 )