By Topic

Fast Complexified Quaternion Fourier Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salem Said ; GIPSA-Lab., St. Martin d'Heres ; Nicolas Le Bihan ; Stephen J. Sangwine

In this paper, we consider the extension of the Fourier transform to biquaternion-valued signals. We introduce a transform that we call the biquaternion Fourier transform (BiQFT). After giving some general properties of this transform, we show how it can be used to generalize the notion of analytic signal to complex-valued signals. We introduce the notion of hyperanalytic signal. We also study the Hermitian symmetries of the BiQFT and their relation to the geometric nature of a biquaternion-valued signal. Finally, we present a fast algorithm for the computation of the BiQFT. This algorithm is based on a (complex) change of basis and four standard complex FFTs.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 4 )