By Topic

Adaptive Backstepping Control System for Magnetic Levitation Apparatus Using Recurrent Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Faa-Jeng Lin ; Nat. Central Univ., Chungli ; Li-Tao Teng ; Po-Huang Shieh

An adaptive backstepping control system using a recurrent neural network (RNN) is proposed to control the mover position of a magnetic levitation apparatus to compensate the uncertainties including the friction force in this study. First, the dynamic model of the magnetic levitation apparatus is derived. Then, an adaptive backstepping approach is proposed to compensate disturbances including the friction force occurring in the motion control system. Moreover, to further increasing of the robustness of the magnetic levitation apparatus, a RNN uncertainty estimator is proposed to estimate the required lumped uncertainty in the adaptive backstepping control system. Furthermore, an on-line parameter training methodology, which is derived using the gradient descent method, is proposed to increase the learning capability of the RNN. The effectiveness of the proposed control scheme is verified by some experimental results. With the proposed adaptive backstepping control system using RNN, the mover position of the magnetic levitation apparatus possesses the advantages of good transient control performance and robustness to uncertainties for the tracking of periodic trajectories.

Published in:

Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE

Date of Conference:

5-8 Nov. 2007