By Topic

Adaptive Predictive Control With Recurrent Neural Network for Industrial Processes: An Application to Temperature Control of a Variable-Frequency Oil-Cooling Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chi-Huang Lu ; Hsiuping Inst. of Technol., Taichung ; Ching-Chih Tsai

An adaptive predictive control with recurrent neural network prediction for industrial processes is presented. The neural predictive control law with integral action is derived based on the minimization of a modified predictive performance criterion. The stability and steady-state performance of the closed-loop control system are well studied. Numerical simulations reveal that the proposed control gives satisfactory tracking and disturbance rejection performance for two illustrative nonlinear systems with time-delay. Experimental results for temperature control of a variable-frequency oil-cooling process show the efficacy of the proposed method for industrial processes with set-points changes and load disturbances.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:55 ,  Issue: 3 )