By Topic

A Fully Automated Framework for Control of Linear Systems from Temporal Logic Specifications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marius Kloetzer ; Center for Inf. & Syst. Eng., Boston Univ., Boston, MA ; Calin Belta

We consider the following problem: given a linear system and a linear temporal logic (LTL) formula over a set of linear predicates in its state variables, find a feedback control law with polyhedral bounds and a set of initial states so that all trajectories of the closed loop system satisfy the formula. Our solution to this problem consists of three main steps. First, we partition the state space in accordance with the predicates in the formula, and construct a transition system over the partition quotient, which captures our capability of designing controllers. Second, using a procedure resembling model checking, we determine runs of the transition system satisfying the formula. Third, we generate the control strategy. Illustrative examples are included.

Published in:

IEEE Transactions on Automatic Control  (Volume:53 ,  Issue: 1 )