Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Multirate-Output-Feedback-Based LQ-Optimal Discrete-Time Sliding Mode Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Janardhanan, S. ; Dept. of Electr. Eng., Indian Inst. of Technol. Delhi, New Delhi ; Kariwala, V.

The traditional approach for sliding mode control design has been the design of a controller to achieve a predesigned sliding objective. However, not much research has been carried out on the design of the sliding surface. This note presents a technique for designing a sliding surface such that when confined to the surface, the closed-loop system has optimality in the linear quadratic sense. The paper also proposes a multirate-output-feedback-based controller that leads the system to the aforementioned optimal sliding mode.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 1 )