By Topic

Error Tolerant DNA Self-Assembly Using ( \hbox {2}k-\hbox {1} ) \times ( \hbox {2}k-\hbox {1} ) Snake Tile Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaojun Ma ; Northeastern Univ., Boston ; Jing Huang ; Lombardi, F.

DNA self-assembly has been advocated as a possible technique for bottom-up manufacturing of scaffolds for computing systems in the nanoscale region. However, self-assembly is affected by different types of errors (such as growth and facet roughening) that severely limit its applicability. Different methods for reducing the error rate of self-assembly using tiles as basic elements have been proposed. A particularly effective method relies on snake tile sets that utilize a square block of even size (i.e., 2k times 2k tiles, k = 2, 3,.. .). In this paper, an odd-sized square block [i.e., (2k -1) times (2k - 1)] is proposed as basis for the snake tile set. Compared with other tile sets, the proposed snake tile sets achieve a considerable reduction in error rate at a very modest reduction in growth rate. Growth and facet roughening errors are considered and analytical results are presented to prove the reduction in error rate compared with an even-sized snake tile set. Simulation results are provided.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:7 ,  Issue: 1 )