By Topic

Deblurring Using Regularized Locally Adaptive Kernel Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Takeda, H. ; Univ. of California Santa Cruz, Santa Cruz ; Farsiu, S. ; Milanfar, P.

Kernel regression is an effective tool for a variety of image processing tasks such as denoising and interpolation . In this paper, we extend the use of kernel regression for deblurring applications. In some earlier examples in the literature, such nonparametric deblurring was suboptimally performed in two sequential steps, namely denoising followed by deblurring. In contrast, our optimal solution jointly denoises and deblurs images. The proposed algorithm takes advantage of an effective and novel image prior that generalizes some of the most popular regularization techniques in the literature. Experimental results demonstrate the effectiveness of our method.

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 4 )