By Topic

A Puzzle-Based Defense Strategy Against Flooding Attacks Using Game Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fallah, M.S. ; Dept. of Comput. Eng., Amirkabir Univ. of Technol. Tehran Polytech., Tehran, Iran

In recent years, a number of puzzle-based defense mechanisms have been proposed against flooding denial-of-service (DoS) attacks in networks. Nonetheless, these mechanisms have not been designed through formal approaches and thereby some important design issues such as effectiveness and optimality have remained unresolved. This paper utilizes game theory to propose a series of optimal puzzle-based strategies for handling increasingly sophisticated flooding attack scenarios. In doing so, the solution concept of Nash equilibrium is used in a prescriptive way, where the defender takes his part in the solution as an optimum defense against rational attackers. This study culminates in a strategy for handling distributed attacks from an unknown number of sources.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:7 ,  Issue: 1 )