By Topic

Curve-Skeleton Extraction Using Iterative Least Squares Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Shuen Wang ; Comput. Graphics Group/Visual Syst. Lab., Nat. Cheng-Kung Univ., Tainan ; Tong-Yee Lee

A curve skeleton is a compact representation of 3D objects and has numerous applications. It can be used to describe an object's geometry and topology. In this paper, we introduce a novel approach for computing curve skeletons for volumetric representations of the input models. Our algorithm consists of three major steps: 1) using iterative least squares optimization to shrink models and, at the same time, preserving their geometries and topologies, 2) extracting curve skeletons through the thinning algorithm, and 3) pruning unnecessary branches based on shrinking ratios. The proposed method is less sensitive to noise on the surface of models and can generate smoother skeletons. In addition, our shrinking algorithm requires little computation, since the optimization system can be factorized and stored in the precomputational step. We demonstrate several extracted skeletons that help evaluate our algorithm. We also experimentally compare the proposed method with other well-known methods. Experimental results show advantages when using our method over other techniques.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 4 )