By Topic

Fuzzy-Adaptive-Subspace-Iteration-Based Two-Way Clustering of Microarray Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jahangheer Shaik ; Dept. of Pathology & Immunology, Washington Univ., St. Louis, MO ; Mohammed Yeasin

This paper presents fuzzy-adaptive-subspace-iteration-based two-way clustering (FASIC) of microarray data for finding differentially expressed genes (DEGs) from two-sample microarray experiments. The concept of fuzzy membership is introduced to transform the hard adaptive subspace iteration (ASI) algorithm into a fuzzy-ASI algorithm to perform two-way clustering. The proposed approach follows a progressive framework to assign a relevance value to genes associated with each cluster. Subsequently, each gene cluster is scored and ranked based on its potential to provide a correct classification of the sample classes. These ranks are converted into P values using the R-test, and the significance of each gene is determined. A fivefold validation is performed on the DEGs selected using the proposed approach. Empirical analyses on a number of simulated microarray data sets are conducted to quantify the results obtained using the proposed approach. To exemplify the efficacy of the proposed approach, further analyses on different real microarray data sets are also performed.

Published in:

IEEE/ACM Transactions on Computational Biology and Bioinformatics  (Volume:6 ,  Issue: 2 )