By Topic

Graphic processors to speed-up simulations for the design of high performance solar receptors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Collange, S. ; UPVD, Perpignan ; Daumas, M. ; Defour, D.

Graphics processing units (GPUs) are now powerful and flexible systems adapted and used for other purposes than graphics calculations (general purpose computation on GPU - GPGPU). We present here a prototype to be integrated into simulation codes that estimate temperature, velocity and pressure to design next generations of solar receptors. Such codes will delegate to our contribution on GPUs the computation of heat transfers due to radiations. We use Monte-Carlo line-by-line ray-tracing through finite volumes. This means data-parallel arithmetic transformations on large data structures. Our prototype is inspired on the source code of GPUBench. Our performances on two recent graphics cards (Nvidia 7800GTX and ATI RX1800XL) show some speed-up higher than 400 compared to CPU implementations leaving most of CPU computing resources available. As there were some questions pending about the accuracy of the operators implemented in GPUs, we start this report with a survey and some contributed tests on the various floating point units available on GPUs.

Published in:

Application -specific Systems, Architectures and Processors, 2007. ASAP. IEEE International Conf. on

Date of Conference:

9-11 July 2007