Cart (Loading....) | Create Account
Close category search window
 

The Analysis of Nash Equilibria of the One-Shot Random-Access Game for Wireless Networks and the Behavior of Selfish Nodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Inaltekin, H. ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY ; Wicker, S.B.

We address the fundamental question of whether or not there exist stable operating points in a network in which selfish nodes share a common channel, and if they exist, how the nodes behave at these stable operating points. We begin with a wireless communication network in which n nodes (agents), which might have different utility functions, contend for access on a common, wireless communication channel. We characterize this distributed multiple-access problem in terms of a one-shot random-access game, and then analyze the behavior of the nodes using the tools of game theory. We give necessary and sufficient conditions on nodes for the complete characterization of the Nash equilibria of this game for all n ges 2. We show that all centrally controlled optimal solutions are a subset of this game theoretic solution, and almost all (w.r.t. Lebesgue measure) transmission probability assignments chosen by a central authority are supported by the game theoretic solution. We analyze the behavior of the network throughput at Nash equilibria as a function of the costs of the transmitters incurred by failed transmissions. Finally, we conclude the paper with the asymptotic analysis of the system as the number of transmitters goes to infinity. We show that the asymptotic distribution of the packet arrivals converges in distribution to a Poisson random variable, and the channel throughput converges to -(c/(1+c))ln(c/(1+c)) with c > 0 being the cost of failed transmissions. We also give the best possible bounds on the rates of convergence of the packet arrival distribution and the channel throughput.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:16 ,  Issue: 5 )

Date of Publication:

Oct. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.