By Topic

Autonomous controller for improved dynamic performance of AC grid, parallel-connected, single-phase inverters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salamah, A.M. ; Dept. of Electr. & Electron. Eng., Strathclyde Univ., Glasgow ; Finney, S.J. ; Williams, B.W.

A new control technique is presented for the AC grid connection of distributed generation and parallel-connected inverters. The proposed control technique is based on a modification of the power angle droop control method and uses only locally measured feedback signals. An improvement in transient response, including large step transients, is achieved since the coupling filter parameters are taken into consideration when deriving the power angle of a droop controller. Unlike conventional techniques, the proposed technique is stable and minimises the active and reactive power swing for large load changes. The method achieves good active and reactive power sharing and minimises circulating current between parallel connected units and the grid connection, for both linear and nonlinear loads. Improved transient response is obtained while maintaining power-sharing precision, or output voltage and frequency accuracy. Simulation and experimental results validate that performance is better than that attained with conventional droop- based approaches.

Published in:

Generation, Transmission & Distribution, IET  (Volume:2 ,  Issue: 2 )