By Topic

Well-being analysis for composite generation and transmission systems based on pattern recognition techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. m. Leite Da Silva ; Dept. of Electr. Eng., Fed. Univ. of Itajuba, Itajuba ; L. C. De Resende ; L. a. Da Fonseca Manso ; V. Miranda

A new methodology to evaluate well-being indices for a composite generation and transmission system, based on non-sequential Monte Carlo simulation and pattern recognition techniques, is presented. To classify the success operating states into healthy and marginal, an artificial neural network based on group method data handling techniques is used to capture the patterns of these state classes, during the beginning of the simulation process. The idea is to provide the simulation process with an intelligent memory, based on polynomial parameters, to speed up the evaluation of the operating states. The proposed methodology is applied to the IEEE reliability test system (IEEE-RTS), to the IEEE-RTS-96 and to a configuration of the Brazilian South-Southeastern system.

Published in:

IET Generation, Transmission & Distribution  (Volume:2 ,  Issue: 2 )